Recommended Readings
Ethan Mollick’s “One Useful Thing” Newsletter; start with “The cybernetic teammate”
Andrej Karpathy’s Video Series; Start with “How I use LLMs”
McKinsey’s Article Series; Start with “Gen AI in corporate functions: Looking beyond efficiency gains”
Harvard Business Review’s Article Series; Start with “How to create value systematically with Gen AI”
Aguinis, H., Beltran, J. R., & Cope, A. (2024). How to use generative AI as a human resource management assistant
Cui, Z, Demirer, M., Jaffe, S., Musolff, L., Peng, S., & Salz, T. (2024). The effects of generative AI on high skilled work: Evidence from three field experiments with software developers
Dell'Acqua, F. et al. (2023). Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productivity and quality
Gallifant, J., Afshar, M., Ameen, S., Aphinyanaphongs, Y., Chen, S., Cacciamani, G., ... & Bitterman, D. S. (2024). The TRIPOD-LLM statement: a targeted guideline for reporting large language models use
Gerlich, M. (2025). AI tools in society: Impacts on cognitive offloading and the future of critical thinking
Giordano, V., Spada, I., Chiarello, F., & Fantoni, G. (2024). The impact of ChatGPT on human skills: A quantitative study on twitter data
Gong, Q., Fan, D., & Bartram, T. (2025). Integrating artificial intelligence and human resource management: a review and future research agenda
Gosline, R. R., Zhang, Y., Li, H., Daugherty, P., Chakraborty, A. D., Roussiere, P., & Connolly, P. (2024). Nudge Users to Catch Generative AI Errors
Hewing, M., & Leinhos, V. (2024). The prompt canvas: a literature-based practitioner guide for creating effective prompts in large language models
Miehling, E., Desmond, M., Ramamurthy, K. N., Daly, E. M., Dognin, P., Rios, J., ... & Liu, M. (2024). Evaluating the Prompt Steerability of Large Language Models
Schmidt, G. B., & Martin, C. (2024). Considerations of Using Generative Artificial Intelligence in an Academic Leadership Role
Si, C., Yang, D., & Hashimoto, T. (2024). Can LLMs generate novel research ideas? A large-scale human study with 100+ NLP researchers
Speer, A. B., Perrotta, J., & Kordsmeyer, T. L. (2024). Taking it easy: Off-the-shelf versus fine-tuned supervised modeling of performance appraisal text
Xu, F. F., Song, Y., Li, B., Tang, Y., Jain, K., Bao, M., ... & Neubig, G. (2024). Theagentcompany: Benchmarking LLM agents on consequential real world tasks